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I. Phys. A Math. Gen. 27 (1994) 1233-1250. pdnted in the UK 

Graded contractions of representations of special hear  Lie 
algebras with respect to their maximal parabolic subalgebras 

Xiao-Dan Leng and J Patera 
Centre de Recherches Mathematiques, Universite de M o n W  CP 612&A, M o n W ,  Quebec 
H3C 3J7, Canada 

Received 14 May 1993, m final form 4 October 1993 

Abstract. Parabolic gradings of the classical simple Lie algebras d ( N ,  C) ( N  2 3) are described 
for all maximal parabolic subalgebras. All contractions are found which leave a m i d  
parabolic subalgebra intact and which preserve a parabolic grading (parabolic contractions of 
Lie algebras). Contractions of the ineducible representations of d ( N ,  C) for each parabolic 
coneaction of the Lie algebra a~ the main results of the article. 

1. Introduction 

The purpose of the article is to apply the recently developed theory of graded contractions 
of Lie algebras [l] and their representations [2,3] to one of the most important classes of 
cases, namely to simple Lie algebras contracted in such a way that the largest subalgebras 
(maximal parabolic subalgebras) remain intact. Another equally important class of cases 
consists of contractions of simple Lie algebras during which maximal reductive subalgebras 
remain without modification. 

In this article we consider only the classical simple Lie algebras of type s l ( N ,  C), mainly 
to reduce the length of the paper. The cases of orthogonal and symplectic Lie algebras will 
he considered in a separate article. Here those algebras are sometimes brought up either to 
underlie the similarity/difference of a particular property, or when a body of results applies 
both to o(N,  C) and sp(2n, C). An appealing askct of our approach is that the problem can 
be solved simultaneously for all ranks in each series of Lie algebras and simultaneously for 
all maximal parabolic subalgebras. There are no similar contraction problems considered 
in the literature in this way. 

The standard theory of deformations/contractions of Lie algebras would proceed by 
studying singular transformations of the third degree tensor of the structure constants. 
Consequently such a study needs to fix the dimensions of the Lie algebras and has to 
consider each dimension as a new problem 141. 

Much more efficient from a physicists point of view is the method of Gromov [5,61 
where deformation of representations of unitary Cayley-Klein algebras are considered. 

The vast number of cases, which our method allows us to study simultaneously, contains 
many particularly interesting ones for applications in physics and mathematics. Indeed, 
one may think of the maximal parabolic subalgebras as Lie algebras of inhomogeneous 
transformations, i.e. the semidirect product of an Abelian ideal, ‘translations’, with a 
reductive Lie algebra of ‘homogeneous’ transformations. The homogeneous pa17 of a 
maximal parabolic subalgebra of sZ(N, C) is a maximal reductive subalgebra. It is well 
known that in the case of s l (N ,  C) such a subalgebra decomposes into ‘three ideals (see 
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(2.1) below). A parabolic contraction then becomes a contraction of sE(N, C) such that 
a maximal subalgebra of inhomogeneous transformations remains intact. The best known 
cases of individual parabolic confractions arc those of the real Lie algebras of the de Sitter 
groups to the Lie algebra of the inhomogeneous Lorentz group 171. This problem is studied 
in [8]. A general approach to the study of d e d  contractions of Casmir operators is in [YJ. 

In this article we consider the Lie algebras over the complex field mainly because it is 
the core of the contraction problem even for the real field, and because the reality conditions 
can be imposed subsequently in a standard way on the complex case, splitting it into several 
real ones. 

In order also to provide the parabolic contractions for all irreducible representations 
under consideration, we first study the generic situation. In this way we leave out a small 
number of irreducible representations of the lowest dimensions. These special cases bring 
further simplifications but have to be considered separately. Given their importance in 
applications, we consider them in the subsequent section of the article. The last section 
deals with the contraction of tensor products. 

Let us first recall the main ingredients of our theory 11-31 since it does not resemble the 
traditional theory of contractions (deformations) of Lie algebras and their representations 
(see for example the renews [l0-12]). 

A simultaneous grading of a chosen Lie algebra L and of its representations is assumed. 
More precisely there is a subgroup G of the group of automorphisms AutL of L whose 
action on L, 

Xino-Dan Leng and J Patera 

gLg-’ g E G  (1.1) 

is Abelian. In the cases of interest here G is always a cyclic group ZN of order N. We 
chose a primitive element of ZN, say g, and decompose L into the g-eigenspaces. 

Lr = (X E L I gXg-’ = P Y ” X  g E G}. (1.2) 

Let the representation 4(G) act on V .  Then we can decompose V into its g-eigenspaces 

(1.3) V, = { U  E V I g E G, 4(g)v = eb””u}. 

Thus we have 

v=  v, 
m(mod M 

where G is a finite Abelian (grading) group 131, and the relations 

[x.y1 = z  x E Lj- y E Lk z E Lj+k 

x u = v ’  X E  Lj U €  v, U’€ y+m. 
We assume that not all the relations (1.6) and (1.7) are zero (generic situation). We write 
for simplicity of notation 

(1.6‘) 

(1.7’) 
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instead of (1.6) and (1.7) because we intend to consider the contractions which preserve the 
chosen grading. The contracted commutator [ , 1, is then defined by the uncontracted one 
and the parameters E: 

[ x ,  YI. = E j d x ,  ~1 E L j  Y E Lx. (1.8) 

The requirement that a contraction LE is a Lie algebra yields the system of quadratic 
equations for the contraction parameters 11.31, 

E j k E m , j t k  = EkmEj.k+m = &mjEk,m+j j ,  k, m mod N (1.9) 

although in the non-generic cases only a subset of (1.9) may be needed. 

parameters ( @ j m ) ,  ( j ,  k, m mod N). More precisely, 

x E L j  v E v, . 

The action of LE in V is defined by the uncontracted action LV and contraction 

(1.10) * x . v = @ j m x v  

The result is a representation of L’  in V provided that one has [2,3] 

Ejk@j+k.m = @!m@j,k+m @ j ~ i . m @ k , j + ~  j ,  k, m mod N. (1.11) 

Finally, a tensor product of two representations acting in V and W is a representation 
of the contracted Lie algebra LE with its action in V and W determined by a solution 
@ = (@I,) of (1.11). provided the product is modified as follows: 

x 6  y = ZjkX m y  X E  Y E , w k  (1.12) 

where the contraction parameters ~ j k  are subject to the conditions [2,3] 

@jkzj+k.m = @jmck, j+m =.@j,k+mZk,m j ,  k , m  mod N .  (1.13) 

A grading of a Lie algebra L implies that L as a linear space is decomposed into a 
direct sum (1.4) of grading subspaces where the summation extends over an Abelian group 
G. We say that the grading displays a subalgebra L’ c L if L‘ is a sum of several of the 
subspaces L k .  In this article we are concerned with maximal parabolic subalgebra of the 
simple Lie algebra A,, over C and its parabolic gradhgs. We call a grading parabolic if 
it is the coarsest grading that displays a maximal parabolic subalgebra. Such grading is 
unique up to the action of the group of automorphisms of L for each maximal parabolic 
subalgebra The number of parabolic gradings of a simple Lie algebra L to consider equals 
the number of maximal parabolic subalgebras, i.e. it is equal to the rank of L. 

The grading group G of a parabolic grading of a classical Lie algebra is a cyclic group 
of inner automorphisms. Namely, one has 

& for A, ,n  2 
7%~ forB,,C.,n>2 D.,n>4 

(1.14) 

with exceptions in Dn and C, where for some maximal parabolic subalgebra the grading 
group is Z3. In the case of exceptional simple Lie algebras one also encounters parabolic 
gradings Z,, &, Z,, and 7313. The parabolic gradings of sE(N, @) are described in section 2. 
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In addition to the grading decomposition (1.4), an important characteristic of a grading of 
L for ow purposes is the G-strnctnre matrix K = @it), j ,  k (mod N )  defined as follows 111: 

(1.15) 

Note that by definition K = K ~ .  In studying the parabolic gradings of the classical Lie 
algebras, one encounters only one G-structure for each , d i n g  group; namely, 

(1.16) 

(1.17) 

In these and subsequent contraction matrices, 0 represents a zero matrix element. The rows 
and columns of K (and related matrices throughout the paper) are numbered from 0 to n - 1 
for Zn. The appearance of 0 matrix elements in (1.16) and (1.17) is ow convention because 
the parabolic gradings, as we explain subsequently, do not require that the values of those 
parameters are defined at all. The upper diagonal block 2 x 2 in (1.16) and 3 x 3 in (1.17) 
is the matrix K of the appropriate maximal parabolic subalgebra of L. 

The goal of this article is to study and to describe three related types of contractions. First 
we determine all contractions of the classical Lie algebras that preserve parabolic gradings 
and that leave the corresponding maximal parabolic subalgebras intact. Such contractions 
we call parabolic contractions of the Lie algebras. 

Individual graded contractions are described by a matrix E which plays the role of the 
matrix K of (1.15) for the contracted Lie algebra and which is a solution of a subset of (1.9). 

Parabolic contractions are described here in.a rather concise way for all ranks and all 
maximal parabolic subalgebras. The computation exploits the method of [l]. Typically 
there are only a few parabolic contractions of L for each maximal parabolic subalgebra 
P c L,  namely, two for (1.16) and seven for (1.17). 

Secondly, we determine for each parabolic contraction of a d ( N , C ) ,  all the 
corresponding (parabolic) contractions of irreducible representations using the method of 121. 

Individual contractions of representations refer to a fixed E,  i.e. fixed contraction of the 
Lie algebra, and are described by a matrix defined similarly to E and K and determined 
as solutions of a subset of (1.11). In the case of the adjoint representation one has E = $. 

The thud type of contraction that we need to consider is that of the tensor product of 
representations described by the matrix t and obtained as a solution of (1.13) for a fixed $. 
Without it a contraction of a tensor product of representations of L is not a representation 
of the contracted Lie algebra Le 12.31. 

The complete reducibility of representations of classical Lie algebras is lost in the 
process of parabolic contraction. The contracted representations are not completely 
reducible. Nevertheless, the preservation of the grading allows one to retain a considerable 
insight into the structure of tensor products of contracted representations [2,3]. 

Finally let us underline that, within the graded contraction approach, one has two options 
on how to define the contraction process. The narrow option follows [1,2], meaning that 
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as a result of a contraction the grading subspaces (i.e. all choices of their elements) which 
did not commute before a contraction, may commute after, but the opposite process from 
commuting grading subspaces to non-commuting ones is excluded by om definition of 
contraction. 

The wider definition of a graded contraction, which we prefer to call a graded 
deformation, does not exclude the transformation from commuting to non-commuting 
subspaces. In the extreme, one may start with an Abelian algebra, which ~ v i a l l y  admits any 
grading, and deform it into a non-Abelian one. As long as one insists on the preservation 
of a chosen grading, the process is again governed by (1.9) for the deformation parameters. 
The latter definition clearly offers much 'wilder' variety of outcomes of deformations. 

In this article we adhere to the narmw definition of the contraction process. 

2. Parabolic contractions of sZ(N, C) 

Our first problem in this section is to describe the parabolic gradings of s l ( N ,  C). Then we 
find all the parabolic contractions of sZ(N, C) for each such grading. 

A maximal parabolic subalgebra PA of s l (N ,  C), N > 2, is defined up to equivalence 
under the group of inner automorpbisms of sl (N,  C) by the requirements that it contains 
a Borel subalgebra B of s l (N ,  C) and also a maximal reductive subalgebra LO. The latter 
amounts to 

PA 3 Lo = X d ( h ,  @) X SE(N - h - 1, C) 1 < h 6 N - 1 . (2.1) 

Here UI is a one-dimensional reductive subalgebra also denoted by gl(1, C); we also 
adopted the convention that sE(1, C) is a Lie algebra with only the trivial one-dimensional 
representation. 

It is well known that all Borel subalgebras are sZ(N, C)-conjugate. Two maximal 
parabolic subalgebras PA, Pp of sl (N,  C) are not s l (N ,  C)-conjugate precisely if A # A'. 
The notation LO in (2.1) is justified by tbe fact that this subalgebra of sZ(N, C) turns out to 
be the LO subspace of the parabolic grading decomposition. 

The most transparent description of the parabolic gradings of sZ(N, C) is to consider 
the simple Lie algebra d ( N ,  'C), N >, 3, as represented by N x N matrices 

d ( N ,  C) = [X I X E C N x N ,  trX = O} (2.2) 

to fix a partition (A, &) of N 

h + p = N  

and to introduce the corresponding block-matrix structure of X 

x=(; ;). 
Here 

A E CAxA B E C E V x A  D E CYxrr 
(2.5) 

trA + trD = 0. 
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The maximal paraholic subalgebras PA of d ( N ,  C) are then faiffilly represented by 
the matrices 

Similar lower triangular matrices represent the maximal parabolic subalgebra P N - ~ .  Indeed, 
one has 

where I, is the k x k identity matrix. 
It is easy to verify directly that the decomposition 

sKN, C) = Lo + LI + Lz (2.7) 

where 

(2.8) 
A 0  O B  

is a &-grading of sE(N, C): 

[Lo, Lo1 c Lo 
[Lo, U =  LI [Lo. LZI = Lz [LI, &I= Lo 

[LI,  L11= [Lz,  Lzl = 0 
(2.9) 

from which it is evident that (1.16) is the grading structure matrix in this case as long as 
N > 3. The case N = 2 is degenerate 111. This grading displays the maximal parabolic 
subalgebra PA as 

PA=Lo+.LI .  (2.10) 

It could not be coarser and still display Pi. Hence it is a parabolic grading for all 1 < A < n. 
In general the parabolic grading decomposition of d ( N ,  C) is determined according to 

(1.2) as the eigenspace decomposition of any element g E SU(N) of the SU(N)-conjugacy 
class of elements of the adjoint order 3 denoted by 

(2.11) 

in the Kac coordinates [14]. The integers [ s o , s ~ ,  . . ., s.] of (2.11) should be thought of as 
attached to the nodes of an extended Dynkin diagram of the Lie algebra, with subscripts 
corresponding to the numbering of the nodes, SO being at the extension node. The symbol 
s = [SO. SE, . . . , 3.1 specifies a conjugacy class of elements of finite order in the (compact 
simple simply connected) Lie group and in particular it determines the eigenvalues of any 
element g of that class in any representation of the Lie algebra. In the case of the N- 
dimensional irreducible representation used for the explicit grading (2.8), the general theory 
[ 141 gives us g as the unique diagonal unitary matrix of the conjugacy class (2.1 l), namely 

g=( 0 @+A= N - 1. (2.12) 
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Clearly g generates the cyclic group Z3#. Using (2.12). 

(2.13) 

We find that only three out of the 3N subspaces Lk are non-empty. Thus we get the 
&-grading (2.8). 

In general, a diagonal representative g of a conjugacy class s = [so, st, ..., s.1 of the 
group SU(N) acts on a subspace V(o) of weight o by multiplying every vector of V(o) 
by the eigenvalue 

so + 8, + . . . + s, . . p i ( S . N M  M 
and for o = bjaj 

Ow final task in this section is to determine the parabolic contractions of s l ( N ,  C) for 
every PA. Then we also have the corresponding parabolic grading of s l ( N ,  C) with K as 
in (1.16). By definition of the parabolic contiaction, we must preserve the commutation 
relations [LO, Lo], [Lo, L11 and [LI, L11 of PA. Consequently a result of the parabolic 
contraction of sl(N, C) is a Lie algebra Le with the same &-grading and with the grading 
structure matrix E of the form 

1 1 . 7  
€ = ( l  0 .  y )  (2.14) 

where x and y are indeterminate. 
Following the method described in [l], we have to find the non-hivial solutions of a 

system of quadratic equations for x ,  y obtained by substitution of E from (2.14) into (1.6) 
and by removal from that system all equations containing 811 and E= (the zero matrix 
elements of (2.14)). Such a system is readily solved even by hand, the non-trivial solutions 
being 

X Y 0  

1 1 1  1 1. 
& = ( 1  0 .) and (1 0 i). 

1 ’ 0  
(2.15) 

In the first case we have Le as a Lie algebra with a non-hivial Levy decomposition. Its 
semi-simple part is [LO, LO]. and its radical is Ll + LZ + U,, where Ul is the centre of LO. 

In the second case the Abelian subalgebra L2 commutes with PA. 
Summarizing, there are two parabolic contractions of d(h’,C), N 3, for every 

maximal parabolic subalgebra PA, 1 < h < N - 1, of d ( N ,  C). The lowest case N = 2, is 
degenerate in that the &-grading structure matrix is 

0 1 1  
K = ( l  0 1) (2.16) 

1 1 0  
rather than (1.16). The corresponding contractions are described as an example, (4.20)- 
(4.22), in [ 11. It turns out that there is a 1-parametric continuum of non-isomorphic parabolic 
contractions of sl(2, Q described by the grading structure matrix 

(2.17) 
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3. Parabolic gradings of representations of simple Lie algebras 

The parabolic contractions of Lie algebras serve as the departure point for the study of 
parabolic contractions of representations. A prerequisite for the study is the simultaneous 
parabolic grading of the Lie algebra and of its representations. The result of such a 
grading, for a chosen irreducible representation $(L) acting in V ,  is the description of 
the grading subspaces V, in (1.5) for which (1.7') holds. In particular, if 4 ( L )  is the 
adjoint representation of L, then there is the one-to-one correspondence 

Lk t, v k  for all k.  (3.1) 

We proceed by considering at the same time all the representations of L with the generic 

(3.2) 

for all Lk of L and all V, of V .  Here V may be of finite or infinite dimension. Note the 
strict inclusion of 0 in LkVm meaning that we assume that one does not have L k v ,  = 0 

An added complication is the fact that a given element g of a grading group acting on 
the Lie algebra sl(N, C) as an automorphism of order 3, may act on different irreducible 
representation as an automorphism of order 3 K ,  where K is a divisor of N (see the second 
example of this section). We have seen this phenomenon in (2.12) and (2.13). Note that 
the determinant of the Cartan matrix of sl(N, C) is equal to N .  

In order to reconcile the third roots .of 1 appearing as the eigenvalues of the action 
(2.13) of the grading group on the Lie algebra and the roots of 1 of order 3N determining 
the eigenspaces of @(g) in V ,  with the grading requirement (1.7'), we proceed as follows. 
We equivalently relabel LO. L1, L2 as LO, LN,  and LZN and read the subscripts modulo 
3N. 

The grading subspaces V, are defined by (1.3) as the eigenspaces of the generating 
element 4(g) of the appropriate grading group. Let us recall how one finds the eigenvalues 
of @(g) [14]. Starting from the standard weight decomposition of V ,  

Xim-Dan Leng and J Patera 

grading action 

0 C &Vm E V x t m  

(3.3) 

we have to determine the eigenvalue exp(%im/3N) of @(g) for every weight w of V. The 
general theory [ 141 provides the following answer for the parabolic grading of a simple Lie 
algebra corresponding to a given value of A: 

V ( w )  1 < A < n  (3.4) W i d 3 N  9 (g) V b )  = e 

where aAlN is the coefficient of the simple root CL,, in the expression 
1 N-I 

,=I  
w = - ajorj aj E z N .  (3.5) 

for a weight w as a linear combination of simple roots. 
The weights w of V are readily calculated by a standard algorithm, hence they are 

known for any representation of L acting in V. A grading subspace V, is then a direct sum 
of weight subspaces V(w'), V(o"),  labelled by weights 

(3.6) 
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such that . 

(3.7) , n m =aA =aA (mod 3N). 

Any two weights of an irreducible representation differ by a linear combination of simple 
roots with integer coefficients. Hence every irreducible representation space V decomposes 
into three eigenspaces of @(g) ,  

v = vb-k  VNN -k !&N 0 < b < N .  (3.8) 

The integer b characterizes the congruence class 1111 of the representation V. 
Let us now consider two d(4, C) examples involving the irreducible representations 

of dimension IO with the highest weight (200). Let us choose the maximal parabolic 
subalgebra 4, i.e. A = 2, for the first example. 

Let us descibe 9 in terms of 4 x 4 matrices (2.8), 9 = LO + L1, where 

Lo=(; 4 g h  ; j) L 1 = ( j  1 p .) [ a + d + e + h = O .  

a b . .  . . m o  

(3.9) 
a.b ,  . . . , q  C C  

A common convenient choice of the generators of root decomposition of s l (N ,  C) is 
the following: 

. . .  ;) h a s = ( ’  . .  . 1 . 

. .  . 

and e - ,  = ( e d ,  i = 1,2,3, and their commutators 

-1 
(3.10) 

(3.11) 

In terms of the root decomposition of d(4,C), the subspaces are spanned by the 
following generators: 

(3.12) 
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In order to describe the corresponding &-grading of the representation (200). let us 
recall that its weights o are the following linear combinations of simple roots: 

(200) = ;a1 + a2 + $a3 (ioi) = -& + La 2 3  _ _  
(010) = $a1 + a2 + $a3 (111) = -La1 2 - ;a3 

(220) = -;a1 + a2 + ;a3 (022) = -;a1 - a2 + ;a3 (3.13) 
1 

3 

( i i i )  = ia1 + ia3 (oio) = -;al - az - -a 2 3  

(002) = -4s - a2 - -a I (ioi) = ia1 - p3 
2 3  

each of multiplicity one; the bar denotes a minus sign. The grading eigenvalue (3.4) is 
determined, for the case A = 2, by the coefficient of a2. Hence we find the grading 
subspaces labelled by weights with the same coefficient at az, 

1 I 1 1 vo = V(p1+ p 3 )  + V(p1 - p 3 )  + Vf-ia1 + 4a3) + V(-?.a1 a - La3) 2 

v2 = V(-p1 - a2 + 5 s )  + V(-p1 - a2 - $a3) + V(-la1 2 - a2 - 2, 2 3  ). 

v1 =V(p1+a2+$Y3)+V(~a 3 2 1  +a2++a 2 3) + V(-$a1 +a2 + 4a3) (3.14) 
I 1 1 

Note that LIVI = 0 and LzVz = 0 follow from (3.12) and (3.13) because the weights of VI 
and Vz cannot be changed by L I  and La respectively. 

Let us now change the example by replacing P2 by P I .  Then the eigenvalue in (1.3) is 
a sixth root of 1 because the coefficient of 011 in (3.13) is half-odd. We have 

instead of (3.9). and 

(3.16) 

is a &-pading of L but the subscripts in LI are read modulo 6. The subspaces of V are 
determined by the coefficients of al in (3.13), 

I 1 VI = V(p1 +a2 + p 3 )  + V(4a1 + +ad + V(.?al 2 - 1, 2 3  ) 

1 I + V(-p1 - a2 - p 3 )  + V(-.?al 2 - a2 - 2, 2 3  ) + V(-1a1 2 - La3) 2 

with the subscripts of V ,  read modulo 6. Here Lz of (3.15) is spanned by e,,, and 
But the highest weight of V3 cannot be raised, hence LzV3 = 0. Sinularly one 

finds L4Vs = 0. Consequently the parabolic grading of sZ(4, C) for A = 1 (and also h = 3) 
is not generic for this representation. 
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4. Parabolic contractions of representations of sZ(N, C); the generic case 

Assuming that a parabolic contraction LE of a classical Lie algebra L has been fixed together 
with the corresponding grading of a representation space V, and that this is the generic action 
case (3.2), we want to describe the representation @(LE) acting in V. 

Let us now consider all the parabolic gradings with &-grading group of s l ( N ,  C). More 
precisely we admit the range of values of A given in (2.1). Subsequently when we study the 
orthogonal and symplectic algebras and their parabolic contractions, it will become evident 
that the present contractions apply also to the following cases 

l = l , n - l , n  ino(Zn,C) n > 4 (three of n cases) 

A=n in sp(2n. C) n > 2 (one of n cases). 

In any of these cases there are the two parabolic contractions of L given by the matrices 
E of (2.15). Choosing one of them at a time, OUI task is to solve the system of quadratic 
equations for @ = (@jk )  obtained from (1.11) by r e m a l  of equalities which contain E,,  

and EZ., the 0 matrix elements of (1.16). 
Solved directly (1.1 1) yields the following results: 

E = ( !  ; : ) : e = ( :  : :), (I ; ;), (f ; 1 1  :), (; 1 1 1  ;) 
X Y Z  

(4.1~) 
1 1 1  1 1 1  1 1 1  1 1 1  

(4.lb) 

Here the parameters in can take any value including 0. When non-zero, in most cases 
they can be transformed into a chosen value (for example, 1) by renormalizing the grading 
subsapces of V,. 

In addition to the @ in (4.1) there are other solutions of (1.11) obtained from those 
of (4.1) by a cyclic permutation of columns in any @ of (4.1). Different contractions of 
representations are given by distinct matrices t+b. 

Let us consider an example: 

(4.2) 

Suppose V is graded as in (3.8). In order to simplify notation let us distinguish the 
subscripts by the constant multiplying N in (3.8) and reading that constant (mod 3). Thus 
we write 

v = vo+ v, + v2 =: (2) 
vz 

(4.3) 
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using the symbolic matrix-column for V.  
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The contracted action of LE on V is conveniently written as 

@zoLz h l L 1  @mLo 
0 0  

(4.4) 

The actual content of VO, VI ,  and VZ depends on the choice of the irreducible 
representation one wants to consider. In general a parabolic grading decomposes V as 
in (3.8). The dimension of V may or may not be finite. 

5. Parabolic contractions of representations of sZ(N, C): the non-generic cases 

Let us now consider the representations of s l ( N ,  C) excluded by (3.2) imposed on the 
parabolic grading. Thus we now have 0 C L t V ,  and assume that for some values of k 
and m, Lt annihilates V,. k t  us first determine the irreducible representations of s l (N ,  C) 
in which that happens. These cases are summarized in table 1. 

Let us fix the value of h, 1 Q h <, N - 1. The parabolic decomposition (3.8) of V 
corresponding to 1 is determined by the coefficients of cu,, of weights of the weight system 
of V .  Two weight subspaces V(w’) and V(o”) of V ,  belong to the same grading subspace 
V ,  with m given by (3.7). 

Consider any irreducible representation of s l (N,C)  with the highest weight 
( X I ,  X Z ,  . . . , X N - I )  (relative to the basis of the fundamental weights). The difference of 
the highest and the lowest‘ weight ( - x N - I ,  -XN-Z,  . . . , -XI) is then 

(x l+xN-l ,xz+x,v-z  ,..., x A + x N - i ,  ..., xN-1 + X I ) =  C~jaj N-1 

j=l 

Aj E Z’O for 1 < j < N - 1.  (5.1) 

If AA = 1 then there are only two non-empty subspaces in (3.8) because c r ~  in that 
weight system has only two values of coefficients. This happens precisely for the lowest- 
dimensional representations (10. . . 0) and (0. . . 01) of s l (N ,  C). More precisely we have 
for (10 ... 0) 

v = VN-A f dimVN-A = 1 dimV3,v-A = N - 1 (5.2) 

and the highest weight subspace is in VN-A and the lowest weight subspace is in V ~ N - A .  
Consequently, 

LNVN-A = 0 LZNV~N-A = 0 (5.3) 

because = 0. 

while keeping h unchanged. 
For (0.. .01) we need to change the sign of the subspaces of V, in (5.2) and (5.3). 
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The case Ah = 2 occurs for the following irreducible representations 

(200. . . 00) and (0. . .W2) (5.44 

(010 ... 00) and (0 ... 010) (5.4b) 

(100.. .01). (5.44 
For these representations the annihilations LwV, = 0 are described in table 1. 

1N(N 2 + 1) is as follows: 
The grading decomposition of the representation space (20 ... 0) of dimension 

v = VN-a + VzN-U + VSN-, 1 4 h 4 N - 1 (5.5) 

and 

L~Vw-21  = LZNV3N-U = 0 (5.6) 

where 

dimvN-U = h(N-h) dnv7.N-U = ih(h+l )  dUV3N-U = $(N-h)(N-h+l). 
(5.7) 

The decomposition of V of (0.. .02) is again obtained by reversing the sign of the subspaces 
of V, and referring to the same A. 

The representation space. of (010.. .O) for the parabolic gradmgs h = 1 and N - 1 
decomposes like (10.. .O), and for 1 < h < N - 1 it decomposes like that of (20.. .O). 
More precisely 

v VN-U + v2X-U -k V 3 N - U  (5.8) 

and 

dhlvN-u = A(N-h) . dUvz~,’-~ = $h(h-1) dhlV3N-U = $(N-h)(N-A-1) . 
(5.9) 

The grading decompositions of V of (0.. .010) are obtained again by reversing the 

The adjoint representation (10.. . 01) is graded l i e  the Lie algebra 

Note that V~N-Z,I. = 0 for h = 1 and V3N-U = 0 for A = N - 1. 

signs of subspaces of V,,, above. 

v = V0-F VN + !&q 
and LN VN = L w  VZN = 0. 

dimVo =A2-!- (N -A)’- 1 dimv,  =dim&N =h(N -A) 

In table 1 we show the matrix @ before contraction for all the non-generic cases, i.e. 

The representation contractions are now solutions of the subsystem of (1.11) obtained 
when some LnV, = 0. They are indicted by the zeros of the matrix @. 

from (1.11) by removal of equations which involve: 

(1) 811 and $22, due to the particularity of parabolic gradings of sl(N, C) (cf (1.16)), and 
(2) equations containg $km = 0 from table 1. 

Solutions of a subsystem can be found directly. It turns out that those solutions are 
also found among the generic ones (4.1). These are precisely those solutions of (4.1) which 
have all the zeros required by (2) above. 
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6. Tensor product Contractions 

One of the most frequent operations in represenkition theory is tensor multiplication. The 
complete reducibility of representations of simple Lie algebras is lost during the contractions. 
Nevertheless the preservation of a grading (parabolic grading in our case) allows one a 
considerable insight into the smcture of the product [2, 31. 

Let V' and W' be two representation spaces of a contraction LE of simple Lie 
algebra L,  the action of LE on V" and W" being described by @. From the simultaneous 
grading we have 

v" = @ v: w' = wt. 
m k 

In general after the contraction we have 

LC (V'O w') # LEV" @ w' + v" 8 LEW" . (6.2) 

In order to transform (6.2) into an equality, as needed if the tensor product of representations 
should be a representation, we have to introduce a contraction t of the tensor product [2] 

Then using t in (6.2) (see [31 for details), we arrive at the conditions (1.13), for a given @. 
As in the case of E and @, one can renormalize the p d i n g  subspaces in the tensor 

product problem and thus bring the non-zero matrix elements to a desired value, normally 
one. 

Unlike the equations for E and @, the equations for t, given a @, are linear in t. Hence 
a sum of several r's referring to the same @ is again a solution of (1.13). 

The non-trivial contractions t for the paraboLic &-graded cases of the generic type are 
found in table 2. Let us consider an example choosing the non-generic case 

(IO.. .O) 8 (10.. .O) = (20.. .O) e3 (010.. .O) . (6.4) 

The grading decompositions for the three irreducible representations involved here are shown 
in table 1 as well as the dimensions of theu grading subspaces. Putting V = (IO.. .O), 
W' = (20.. .O), W" = (010.. .O), we have 

V = VN-A 8 &N-A 

W" = 
W' = WL-2 8 W&-n 8 WiN-2 

(6.5) 
e3 WiN-% e3 w;N-2,. 

The grading decomposition of the product V 8 V is thus 

(6.6) 
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Table 2. Solutions r of (1.13) containing the tmor prduci wntraction paramelen T for Qven 
@. Conventions: ‘ p  # q  and p , q  = 0.1: x # y # L a n d x , y , x  E R  # 0 s . t  E R f o ;  
0,b.c. .._, i and w ER. 

. 

!b r ,h r ,h r 

(f 4 4 )  
( f  i E) 

P P P  a a o  

1 1 1  a a a  

(: : ;) ( P  P P )  ( I  4 1) (! P P )  ($ Y ’) 
(; : x) (. U) .) (; a r) (. , .) (; y ’) 

(: f ;) ( P  Y Z X  P P )  (f ;) ( P  X * Y  P P )  ( I  f t) 
( t  I 1) ( Y  f .) ( I  I 1) ( 4  T r) ( t  I I )  

. X Y  x y : Y ’ X  Y ’ X  

1 1 1  1 1 1  

X Y  X Y ’  Y , ’  x Y ’ X  
P P P  x x x  P ’  P P Y Y Y  

X Y Y  Y X Y  

1 1 1  1 1 1  

n X 

x x x  

a .  

because the subscripts of the product factors are added (mod 3N).  

Let us now choose LE given by F = 1 0 . of (2.15) and = E as used in (4.4). 

One of the solutions of (1.13) is always T = E =e. Then simplifying again the subscripts 
in (6.6) by writing it as the coefficient of N (mod 3) ,  we can write 

(1 : 3 
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) 
vo 0 0 vo 8 vo 

vi 8 vo 8 vo 8 vi 
vz 8 vo 8 vo 8 vz 

. =(: 2 ; o ) 8 ( ! ) = (  (6.7) 

In order to verify that the contracted tensor product is a representation of Lh with the 
contracted action Le(.V)+ on the individual subspace we have to verify the equality 

(LC(V 8 V),)* = (Lev  8 V) f  + (V 8 L V $ .  (6.8) 

We have the left side using L from (4.4) and V 8 V from 

where all the transformations which are left are as before the contraction. 

it as the sum of the following two expressions: 
In order to write the right side of (6.8), note that without loss of generality we can do 

(6.10) 

L o 0 0  V O O O  
((LEV)* 8 qz = 

0 
LlVO+LOVi LOVO 
LZVO+LOV2 0 LOVO , 

LOVO 8 v, 
(LIVO +LOW 8 vo + LOVO 8 Vl 
(LZVO + LOVZ) 8 vo + LOVO Q vz 

= ( 2  io 8 ) 8 ( L l v o + L o v l )  Lo vo 

=i VZ 8 Lo& + vo 8 (Lzv,  + LOVZ 

vz 0 vo LZVO + LOVZ 
vo 8 LOVO 

Vl 0 LOVO + vo 0 (LIVO + LOVI) : (6.11) 

Substitution of (6.91, (6.10). and (6.11) into (6.8) clearly makes both sides equal. All 
operations which remain are those before the contraction. Hence we have demonstrated 
that the contracted tensor product (V 8 V ) ,  is a representation of LE. Moreover, it has 
been achieved by simply striking out certain terms of the uncontracted transformations of 
VI 0 VZ and VZ 8 VI as well as VI 8 VI and Vz 8 Vz by L. 
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